Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Alzheimers Dement ; 20(4): 2886-2893, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38456576

ABSTRACT

INTRODUCTION: Federal policies and guidelines have expanded the return of individual results to participants and expectations for data sharing between investigators and through repositories. Here, we report investigators' and study participants' views and experiences with data stewardship practices within frontotemporal lobal degeneration (FTLD) research, which reveal unique ethical challenges. METHODS: Semi-structured interviews with (1) investigators conducting FTLD research that includes genetic data collection and/or analysis and (2) participants enrolled in a single site longitudinal FTLD study. RESULTS: Analysis of the interviews identified three meta themes: perspectives on data sharing, experiences with enrollment and participation, and data management and security as mechanisms for participant protections. DISCUSSION: This study identified a set of preliminary gaps and needs regarding data stewardship within FTLD research. The results offer initial insights on ethical challenges to data stewardship aimed at informing future guidelines and policies.


Subject(s)
Frontotemporal Lobar Degeneration , Humans , Frontotemporal Lobar Degeneration/genetics , Atrophy , Research Personnel
2.
Front Neurosci ; 18: 1258996, 2024.
Article in English | MEDLINE | ID: mdl-38469573

ABSTRACT

Introduction: A hexanucleotide repeat expansion (HRE) intronic to chromosome 9 open reading frame 72 (C9orf72) is recognized as the most common genetic cause of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and ALS-FTD. Identifying genes that show similar regional co-expression patterns to C9orf72 may help identify novel gene targets and biological mechanisms that mediate selective vulnerability to ALS and FTD pathogenesis. Methods: We leveraged mRNA expression data in healthy brain from the Allen Human Brain Atlas to evaluate C9orf72 co-expression patterns. To do this, we correlated average C9orf72 expression values in 51 regions across different anatomical divisions (cortex, subcortex, and cerebellum) with average gene expression values for 15,633 protein-coding genes, including 54 genes known to be associated with ALS, FTD, or ALS-FTD. We then performed imaging transcriptomic analyses to evaluate whether the identified C9orf72 co-expressed genes correlated with patterns of cortical thickness in symptomatic C9orf72 pathogenic HRE carriers (n = 19) compared to controls (n = 23). Lastly, we explored whether genes with significant C9orf72 imaging transcriptomic correlations (i.e., "C9orf72 imaging transcriptomic network") were enriched in specific cell populations in the brain and enriched for specific biological and molecular pathways. Results: A total of 2,120 genes showed an anatomical distribution of gene expression in the brain similar to C9orf72 and significantly correlated with patterns of cortical thickness in C9orf72 HRE carriers. This C9orf72 imaging transcriptomic network was differentially expressed in cell populations previously implicated in ALS and FTD, including layer 5b cells, cholinergic neurons in the spinal cord and brainstem and medium spiny neurons of the striatum, and was enriched for biological and molecular pathways associated with protein ubiquitination, autophagy, cellular response to DNA damage, endoplasmic reticulum to Golgi vesicle-mediated transport, among others. Conclusion: Considered together, we identified a network of C9orf72 associated genes that may influence selective regional and cell-type-specific vulnerabilities in ALS/FTD.

3.
Alzheimers Dement ; 20(3): 2058-2071, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215053

ABSTRACT

INTRODUCTION: Clinical research in Alzheimer's disease (AD) lacks cohort diversity despite being a global health crisis. The Asian Cohort for Alzheimer's Disease (ACAD) was formed to address underrepresentation of Asians in research, and limited understanding of how genetics and non-genetic/lifestyle factors impact this multi-ethnic population. METHODS: The ACAD started fully recruiting in October 2021 with one central coordination site, eight recruitment sites, and two analysis sites. We developed a comprehensive study protocol for outreach and recruitment, an extensive data collection packet, and a centralized data management system, in English, Chinese, Korean, and Vietnamese. RESULTS: ACAD has recruited 606 participants with an additional 900 expressing interest in enrollment since program inception. DISCUSSION: ACAD's traction indicates the feasibility of recruiting Asians for clinical research to enhance understanding of AD risk factors. ACAD will recruit > 5000 participants to identify genetic and non-genetic/lifestyle AD risk factors, establish blood biomarker levels for AD diagnosis, and facilitate clinical trial readiness. HIGHLIGHTS: The Asian Cohort for Alzheimer's Disease (ACAD) promotes awareness of under-investment in clinical research for Asians. We are recruiting Asian Americans and Canadians for novel insights into Alzheimer's disease. We describe culturally appropriate recruitment strategies and data collection protocol. ACAD addresses challenges of recruitment from heterogeneous Asian subcommunities. We aim to implement a successful recruitment program that enrolls across three Asian subcommunities.


Subject(s)
Alzheimer Disease , North American People , Humans , Alzheimer Disease/genetics , Pilot Projects , Asian/genetics , Canada , Risk Factors
4.
medRxiv ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38260595

ABSTRACT

Importance: The under-representation of participants with non-European ancestry in genome-wide association studies (GWAS) is a critical issue that has significant implications, including hindering the progress of precision medicine initiatives. This issue is particularly significant in the context of neurodegenerative diseases (NDDs), where current therapeutic approaches have shown limited success. Addressing this under-representation is crucial to harnessing the full potential of genomic medicine in underserved communities and improving outcomes for NDD patients. Objective: Our primary objective was to assess the representation of non-European ancestry participants in genetic discovery efforts related to NDDs. We aimed to quantify the extent of inclusion of diverse ancestry groups in NDD studies and determine the number of associated loci identified in more inclusive studies. Specifically, we sought to highlight the disparities in research efforts and outcomes between studies predominantly involving European ancestry participants and those deliberately targeting non-European or multi-ancestry populations across NDDs. Evidence Review: We conducted a systematic review utilizing existing GWAS results and publications to assess the inclusion of diverse ancestry groups in neurodegeneration and neurogenetics studies. Our search encompassed studies published up to the end of 2022, with a focus on identifying research that deliberately included non-European or multi-ancestry cohorts. We employed rigorous methods for the inclusion of identified articles and quality assessment. Findings: Our review identified a total of 123 NDD GWAS. Strikingly, 82% of these studies predominantly featured participants of European ancestry. Endeavors specifically targeting non-European or multi-ancestry populations across NDDs identified only 52 risk loci. This contrasts with predominantly European studies, which reported over 90 risk loci for a single disease. Encouragingly, over 65% of these discoveries occurred in 2020 or later, indicating a recent increase in studies deliberately including non-European cohorts. Conclusions and relevance: Our findings underscore the pressing need for increased diversity in neurodegenerative research. The significant under-representation of non-European ancestry participants in NDD GWAS limits our understanding of the genetic underpinnings of these diseases. To advance the field of neurodegenerative research and develop more effective therapies, it is imperative that future investigations prioritize and harness the genomic diversity present within and across global populations.

5.
bioRxiv ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-37823036

ABSTRACT

INTRODUCTION: Altered immune signatures are emerging as a central theme in neurodegenerative disease, yet little is known about immune responses in early-onset Alzheimer's disease (EOAD). METHODS: We examined single-cell RNA-sequencing (scRNA-seq) data from peripheral blood mononuclear cells (PBMCs) and droplet digital (dd)PCR data from CD4 T cells from participants with EOAD and clinically normal controls. RESULTS: We analyzed ~182,000 PBMCs by scRNA-seq and discovered increased interferon signaling-associated gene (ISAG) expression and striking expansion of antiviral-like ISAGhi T cells in EOAD. We isolated CD4 T cells from additional EOAD cases and confirmed increased expression of ISAGhi marker genes. Publicly available cerebrospinal fluid leukocyte scRNA-seq data from late-onset mild cognitive impairment and AD also revealed increased expression of interferon-response genes. DISCUSSION: ISAGhi T cells, apparently primed for antiviral activity, are expanded in EOAD. Additional research into these cells and the role of heightened peripheral IFN signaling in neurodegeneration is warranted.

6.
medRxiv ; 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37961381

ABSTRACT

In frontotemporal lobar degeneration (FTLD), pathological protein aggregation is associated with a decline in human-specialized social-emotional and language functions. Most disease protein aggregates contain either TDP-43 (FTLD-TDP) or tau (FTLD-tau). Here, we explored whether FTLD targets brain regions that express genes containing human accelerated regions (HARs), conserved sequences that have undergone positive selection during recent human evolution. To this end, we used structural neuroimaging from patients with FTLD and normative human regional transcriptomic data to identify genes expressed in FTLD-targeted brain regions. We then integrated primate comparative genomic data to test our hypothesis that FTLD targets brain regions expressing recently evolved genes. In addition, we asked whether genes expressed in FTLD-targeted brain regions are enriched for genes that undergo cryptic splicing when TDP-43 function is impaired. We found that FTLD-TDP and FTLD-tau subtypes target brain regions that express overlapping and distinct genes, including many linked to neuromodulatory functions. Genes whose normative brain regional expression pattern correlated with FTLD cortical atrophy were strongly associated with HARs. Atrophy-correlated genes in FTLD-TDP showed greater overlap with TDP-43 cryptic splicing genes compared with atrophy-correlated genes in FTLD-tau. Cryptic splicing genes were enriched for HAR genes, and vice versa, but this effect was due to the confounding influence of gene length. Analyses performed at the individual-patient level revealed that the expression of HAR genes and cryptically spliced genes within putative regions of disease onset differed across FTLD-TDP subtypes. Overall, our findings suggest that FTLD targets brain regions that have undergone recent evolutionary specialization and provide intriguing potential leads regarding the transcriptomic basis for selective vulnerability in distinct FTLD molecular-anatomical subtypes.

7.
Alzheimers Dement (Amst) ; 15(4): e12482, 2023.
Article in English | MEDLINE | ID: mdl-37780862

ABSTRACT

Early-onset Alzheimer's disease (AD) is highly heritable, yet only 10% of cases are associated with known pathogenic mutations. For early-onset AD patients without an identified autosomal dominant cause, we hypothesized that their early-onset disease reflects further enrichment of the common risk-conferring single nucleotide polymorphisms associated with late-onset AD. We applied a previously validated polygenic hazard score for late-onset AD to 193 consecutive patients diagnosed at our tertiary dementia referral center with symptomatic early-onset AD. For comparison, we included 179 participants with late-onset AD and 70 healthy controls. Polygenic hazard scores were similar in early- versus late-onset AD. The polygenic hazard score was not associated with age-of-onset or disease biomarkers within early-onset AD. Early-onset AD does not represent an extreme enrichment of the common single nucleotide polymorphisms associated with late-onset AD. Further exploration of novel genetic risk factors of this highly heritable disease is warranted.Highlights: There is a unique genetic architecture of early- versus late-onset Alzheimer's disease (AD).Late-onset AD polygenic risk is not an explanation for early-onset AD.Polygenic risk of late-onset AD does not predict early-onset AD biology.Unique genetic architecture of early- versus late-onset AD parallels AD heterogeneity.

8.
Res Sq ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37886540

ABSTRACT

As genetic testing has become more accessible and affordable, variants of uncertain significance (VUS) are increasingly identified, and determining whether these variants play causal roles in disease is a major challenge. The known disease-associated Annexin A11 (ANXA11) mutations result in ANXA11 aggregation, alterations in lysosomal-RNA granule co-trafficking, and TDP-43 mis-localization and present as amyotrophic lateral sclerosis or frontotemporal dementia. We identified a novel VUS in ANXA11 (P93S) in a kindred with corticobasal syndrome and unique radiographic features that segregated with disease. We then queried neurodegenerative disorder clinic databases to identify the phenotypic spread of ANXA11 mutations. Multi-modal computational analysis of this variant was performed and the effect of this VUS on ANXA11 function and TDP-43 biology was characterized in iPSC-derived neurons. Single-cell sequencing and proteomic analysis of iPSC-derived neurons and microglia were used to determine the multiomic signature of this VUS. Mutations in ANXA11 were found in association with clinically diagnosed corticobasal syndrome, thereby establishing corticobasal syndrome as part of ANXA11 clinical spectrum. In iPSC-derived neurons expressing mutant ANXA11, we found decreased colocalization of lysosomes and decreased neuritic RNA as well as decreased nuclear TDP-43 and increased formation of cryptic exons compared to controls. Multiomic assessment of the P93S variant in iPSC-derived neurons and microglia indicates that the pathogenic omic signature in neurons is modest compared to microglia. Additionally, omic studies reveal that immune dysregulation and interferon signaling pathways in microglia are central to disease. Collectively, these findings identify a new pathogenic variant in ANXA11, expand the range of clinical syndromes caused by ANXA11 mutations, and implicate both neuronal and microglia dysfunction in ANXA11 pathophysiology. This work illustrates the potential for iPSC-derived cellular models to revolutionize the variant annotation process and provides a generalizable approach to determining causality of novel variants across genes.

9.
Prog Brain Res ; 281: 25-53, 2023.
Article in English | MEDLINE | ID: mdl-37806715

ABSTRACT

Treatment refractory depression (TRD) in the elderly is a common psychiatric disorder with high comorbidity and mortality. Older adults with TRD often have complicated comorbidities and several predisposing risk factors, which may lead to neuropsychiatric dysfunction and poor response to treatment. Several hypotheses suggest the underlying mechanisms, including vascular, immunological, senescence, or abnormal protein deposition. Treatment strategies for TRD include optimization of current medication dose, augmentation, switching to an alternative agent or class, and combination of different antidepressant classes, as well as nonpharmacological adjuvant interventions such as biophysical stimulation and psychotherapy. In summary, treatment recommendations for TRD in the elderly favor a multimodal approach, combining pharmacological and nonpharmacological treatments.


Subject(s)
Depressive Disorder, Treatment-Resistant , Humans , Aged , Depressive Disorder, Treatment-Resistant/drug therapy , Drug Therapy, Combination , Treatment Outcome , Antidepressive Agents/therapeutic use , Psychotherapy
10.
Science ; 381(6663): 1156-1157, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37708264

ABSTRACT

Human neurons transplanted into mice with amyloid plaques die by necroptosis.


Subject(s)
Alzheimer Disease , Necroptosis , Plaque, Amyloid , Animals , Humans , Mice , Alzheimer Disease/pathology , Neurons/pathology , Neurons/transplantation , Plaque, Amyloid/pathology
11.
Genome Med ; 15(1): 53, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37464408

ABSTRACT

BACKGROUND: Emerging evidence from mouse models is beginning to elucidate the brain's immune response to tau pathology, but little is known about the nature of this response in humans. In addition, it remains unclear to what extent tau pathology and the local inflammatory response within the brain influence the broader immune system. METHODS: To address these questions, we performed single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) from carriers of pathogenic variants in MAPT, the gene encoding tau (n = 8), and healthy non-carrier controls (n = 8). Primary findings from our scRNA-seq analyses were confirmed and extended via flow cytometry, droplet digital (dd)PCR, and secondary analyses of publicly available transcriptomics datasets. RESULTS: Analysis of ~ 181,000 individual PBMC transcriptomes demonstrated striking differential expression in monocytes and natural killer (NK) cells in MAPT pathogenic variant carriers. In particular, we observed a marked reduction in the expression of CX3CR1-the gene encoding the fractalkine receptor that is known to modulate tau pathology in mouse models-in monocytes and NK cells. We also observed a significant reduction in the abundance of nonclassical monocytes and dysregulated expression of nonclassical monocyte marker genes, including FCGR3A. Finally, we identified reductions in TMEM176A and TMEM176B, genes thought to be involved in the inflammatory response in human microglia but with unclear function in peripheral monocytes. We confirmed the reduction in nonclassical monocytes by flow cytometry and the differential expression of select biologically relevant genes dysregulated in our scRNA-seq data using ddPCR. CONCLUSIONS: Our results suggest that human peripheral immune cell expression and abundance are modulated by tau-associated pathophysiologic changes. CX3CR1 and nonclassical monocytes in particular will be a focus of future work exploring the role of these peripheral signals in additional tau-associated neurodegenerative diseases.


Subject(s)
Monocytes , Tauopathies , Mice , Animals , Humans , Monocytes/metabolism , Leukocytes, Mononuclear , Single-Cell Gene Expression Analysis , Tauopathies/genetics , Tauopathies/metabolism , Tauopathies/pathology , Microglia/metabolism , Single-Cell Analysis , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Membrane Proteins/metabolism
12.
bioRxiv ; 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37503230

ABSTRACT

Introduction: A hexanucleotide repeat expansion (HRE) intronic to chromosome 9 open reading frame 72 (C9orf72) is recognized as the most common genetic cause of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and ALS-FTD. Identifying genes that show similar regional co-expression patterns to C9orf72 may help identify novel gene targets and biological mechanisms that mediate selective vulnerability to ALS and FTD pathogenesis. Methods: We leveraged mRNA expression data in healthy brain from the Allen Human Brain Atlas to evaluate C9orf72 co-expression patterns. To do this, we correlated average C9orf72 expression values in 51 regions across different anatomical divisions (cortex, subcortex, cerebellum) with average gene expression values for 15,633 protein-coding genes, including 50 genes known to be associated with ALS, FTD, or ALS-FTD. We then evaluated whether the identified C9orf72 co-expressed genes correlated with patterns of cortical thickness in symptomatic C9orf72 pathogenic HRE carriers (n=19). Lastly, we explored whether genes with significant C9orf72 radiogenomic correlations (i.e., 'C9orf72 gene network') were enriched in specific cell populations in the brain and enriched for specific biological and molecular pathways. Results: A total of 1,748 genes showed an anatomical distribution of gene expression in the brain similar to C9orf72 and significantly correlated with patterns of cortical thickness in C9orf72 HRE carriers. This C9orf72 gene network was differentially expressed in cell populations previously implicated in ALS and FTD, including layer 5b cells, cholinergic motor neurons in the spinal cord, and medium spiny neurons of the striatum, and was enriched for biological and molecular pathways associated with multiple neurotransmitter systems, protein ubiquitination, autophagy, and MAPK signaling, among others. Conclusions: Considered together, we identified a network of C9orf72-associated genes that may influence selective regional and cell-type-specific vulnerabilities in ALS/FTD.

13.
Ann Neurol ; 94(4): 632-646, 2023 10.
Article in English | MEDLINE | ID: mdl-37431188

ABSTRACT

OBJECTIVE: Microtubule-associated protein tau (MAPT) mutations cause frontotemporal lobar degeneration, and novel biomarkers are urgently needed for early disease detection. We used task-free functional magnetic resonance imaging (fMRI) mapping, a promising biomarker, to analyze network connectivity in symptomatic and presymptomatic MAPT mutation carriers. METHODS: We compared cross-sectional fMRI data between 17 symptomatic and 39 presymptomatic carriers and 81 controls with (1) seed-based analyses to examine connectivity within networks associated with the 4 most common MAPT-associated clinical syndromes (ie, salience, corticobasal syndrome, progressive supranuclear palsy syndrome, and default mode networks) and (2) whole-brain connectivity analyses. We applied K-means clustering to explore connectivity heterogeneity in presymptomatic carriers at baseline. Neuropsychological measures, plasma neurofilament light chain, and gray matter volume were compared at baseline and longitudinally between the presymptomatic subgroups defined by their baseline whole-brain connectivity profiles. RESULTS: Symptomatic and presymptomatic carriers had connectivity disruptions within MAPT-syndromic networks. Compared to controls, presymptomatic carriers showed regions of connectivity alterations with age. Two presymptomatic subgroups were identified by clustering analysis, exhibiting predominantly either whole-brain hypoconnectivity or hyperconnectivity at baseline. At baseline, these two presymptomatic subgroups did not differ in neuropsychological measures, although the hypoconnectivity subgroup had greater plasma neurofilament light chain levels than controls. Longitudinally, both subgroups showed visual memory decline (vs controls), yet the subgroup with baseline hypoconnectivity also had worsening verbal memory and neuropsychiatric symptoms, and extensive bilateral mesial temporal gray matter decline. INTERPRETATION: Network connectivity alterations arise as early as the presymptomatic phase. Future studies will determine whether presymptomatic carriers' baseline connectivity profiles predict symptomatic conversion. ANN NEUROL 2023;94:632-646.


Subject(s)
Frontotemporal Dementia , tau Proteins , Humans , Cross-Sectional Studies , tau Proteins/genetics , Brain/diagnostic imaging , Mutation/genetics , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging , Frontotemporal Dementia/genetics , Biomarkers
14.
Alzheimers Dement ; 19(12): 5817-5836, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37270665

ABSTRACT

Frontotemporal dementia (FTD) is one of the leading causes of dementia before age 65 and often manifests as abnormal behavior (in behavioral variant FTD) or language impairment (in primary progressive aphasia). FTD's exact clinical presentation varies by culture, language, education, social norms, and other socioeconomic factors; current research and clinical practice, however, is mainly based on studies conducted in North America and Western Europe. Changes in diagnostic criteria and procedures as well as new or adapted cognitive tests are likely needed to take into consideration global diversity. This perspective paper by two professional interest areas of the Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment examines how increasing global diversity impacts the clinical presentation, screening, assessment, and diagnosis of FTD and its treatment and care. It subsequently provides recommendations to address immediate needs to advance global FTD research and clinical practice.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Humans , Aged , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/therapy , Frontotemporal Dementia/psychology , Alzheimer Disease/diagnosis , Alzheimer Disease/therapy , Neuropsychological Tests , Language , Europe
15.
Mol Psychiatry ; 28(7): 3121-3132, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37198259

ABSTRACT

Genome-wide association studies (GWAS) of Alzheimer's disease are predominantly carried out in European ancestry individuals despite the known variation in genetic architecture and disease prevalence across global populations. We leveraged published GWAS summary statistics from European, East Asian, and African American populations, and an additional GWAS from a Caribbean Hispanic population using previously reported genotype data to perform the largest multi-ancestry GWAS meta-analysis of Alzheimer's disease and related dementias to date. This method allowed us to identify two independent novel disease-associated loci on chromosome 3. We also leveraged diverse haplotype structures to fine-map nine loci with a posterior probability >0.8 and globally assessed the heterogeneity of known risk factors across populations. Additionally, we compared the generalizability of multi-ancestry- and single-ancestry-derived polygenic risk scores in a three-way admixed Colombian population. Our findings highlight the importance of multi-ancestry representation in uncovering and understanding putative factors that contribute to risk of Alzheimer's disease and related dementias.


Subject(s)
Alzheimer Disease , Genetic Predisposition to Disease , Humans , Alzheimer Disease/ethnology , Alzheimer Disease/genetics , Black or African American/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Genotype , Polymorphism, Single Nucleotide/genetics , East Asian People/genetics , European People/genetics , Caribbean People/genetics , Hispanic or Latino/genetics , South American People/genetics
16.
Alzheimers Dement ; 19(8): 3448-3457, 2023 08.
Article in English | MEDLINE | ID: mdl-36807763

ABSTRACT

INTRODUCTION: We tested sex-dependent associations of variation in the SNAP-25 gene, which encodes a presynaptic protein involved in hippocampal plasticity and memory, on cognitive and Alzheimer's disease (AD) neuroimaging outcomes in clinically normal adults. METHODS: Participants were genotyped for SNAP-25 rs1051312 (T > C; SNAP-25 expression: C-allele > T/T). In a discovery cohort (N = 311), we tested the sex by SNAP-25 variant interaction on cognition, Aß-PET positivity, and temporal lobe volumes. Cognitive models were replicated in an independent cohort (N = 82). RESULTS: In the discovery cohort, C-allele carriers exhibited better verbal memory and language, lower Aß-PET positivity rates, and larger temporal volumes than T/T homozygotes among females, but not males. Larger temporal volumes related to better verbal memory only in C-carrier females. The female-specific C-allele verbal memory advantage was evidenced in the replication cohort. CONCLUSIONS: In females, genetic variation in SNAP-25 is associated with resistance to amyloid plaque formation and may support verbal memory through fortification of temporal lobe architecture. HIGHLIGHTS: The SNAP-25 rs1051312 (T > C) C-allele results in higher basal SNAP-25 expression. C-allele carriers had better verbal memory in clinically normal women, but not men. Female C-carriers had higher temporal lobe volumes, which predicted verbal memory. Female C-carriers also exhibited the lowest rates of amyloid-beta PET positivity. The SNAP-25 gene may influence female-specific resistance to Alzheimer's disease (AD).


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Female , Humans , Male , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Biomarkers/metabolism , Genotype , Memory , Positron-Emission Tomography
17.
J Med Genet ; 60(9): 894-904, 2023 09.
Article in English | MEDLINE | ID: mdl-36813542

ABSTRACT

BACKGROUND: The triggering receptor expressed on myeloid cell 2 (TREM2) is a major regulator of neuroinflammatory processes in neurodegeneration. To date, the p.H157Y variant of TREM2 has been reported only in patients with Alzheimer's disease. Here, we report three patients with frontotemporal dementia (FTD) from three unrelated families with heterozygous p.H157Y variant of TREM2: two patients from Colombian families (study 1) and a third Mexican origin case from the USA (study 2). METHODS: To determine if the p.H157Y variant might be associated with a specific FTD presentation, we compared in each study the cases with age-matched, sex-matched and education-matched groups-a healthy control group (HC) and a group with FTD with neither TREM2 mutations nor family antecedents (Ng-FTD and Ng-FTD-MND). RESULTS: The two Colombian cases presented with early behavioural changes, greater impairments in general cognition and executive function compared with both HC and Ng-FTD groups. These patients also exhibited brain atrophy in areas characteristic of FTD. Furthermore, TREM2 cases showed increased atrophy compared with Ng-FTD in frontal, temporal, parietal, precuneus, basal ganglia, parahippocampal/hippocampal and cerebellar regions. The Mexican case presented with FTD and motor neuron disease (MND), showing grey matter reduction in basal ganglia and thalamus, and extensive TDP-43 type B pathology. CONCLUSION: In all TREM2 cases, multiple atrophy peaks overlapped with the maximum peaks of TREM2 gene expression in crucial brain regions including frontal, temporal, thalamic and basal ganglia areas. These results provide the first report of an FTD presentation potentially associated with the p.H157Y variant with exacerbated neurocognitive impairments.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Humans , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Brain/diagnostic imaging , Brain/pathology , Atrophy , Membrane Glycoproteins/genetics , Receptors, Immunologic/genetics
18.
JAMA Neurol ; 80(4): 377-387, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36848111

ABSTRACT

Importance: The neurological substrates of visual artistic creativity (VAC) are unknown. VAC is demonstrated here to occur early in frontotemporal dementia (FTD), and multimodal neuroimaging is used to generate a novel mechanistic hypothesis involving dorsomedial occipital cortex enhancement. These findings may illuminate a novel mechanism underlying human visual creativity. Objective: To determine the anatomical and physiological underpinnings of VAC in FTD. Design, Setting, and Participants: This case-control study analyzed records of 689 patients who met research criteria for an FTD spectrum disorder between 2002 and 2019. Individuals with FTD and emergence of visual artistic creativity (VAC-FTD) were matched to 2 control groups based on demographic and clinical parameters: (1) not visually artistic FTD (NVA-FTD) and (2) healthy controls (HC). Analysis took place between September 2019 to December 2021. Main Outcomes and Measures: Clinical, neuropsychological, genetic, and neuroimaging data were analyzed to characterize VAC-FTD and compare VAC-FTD with control groups. Results: Of 689 patients with FTD, 17 (2.5%) met VAC-FTD inclusion criteria (mean [SD] age, 65 [9.7] years; 10 [58.8%] female). NVA-FTD (n = 51; mean [SD] age, 64.8 [7] years; 25 [49.0%] female) and HC (n = 51; mean [SD] age, 64.5 [7.2] years; 25 [49%] female) groups were well matched to VAC-FTD demographically. Emergence of VAC occurred around the time of onset of symptoms and was disproportionately seen in patients with temporal lobe predominant degeneration (8 of 17 [47.1%]). Atrophy network mapping identified a dorsomedial occipital region whose activity inversely correlated, in healthy brains, with activity in regions found within the patient-specific atrophy patterns in VAC-FTD (17 of 17) and NVA-FTD (45 of 51 [88.2%]). Structural covariance analysis revealed that the volume of this dorsal occipital region was strongly correlated in VAC-FTD, but not in NVA-FTD or HC, with a volume in the primary motor cortex corresponding to the right-hand representation. Conclusions and Relevance: This study generated a novel hypothesis about the mechanisms underlying the emergence of VAC in FTD. These findings suggest that early lesion-induced activation of dorsal visual association areas may predispose some patients to the emergence of VAC under certain environmental or genetic conditions. This work sets the stage for further exploration of enhanced capacities arising early in the course of neurodegeneration.


Subject(s)
Frontotemporal Dementia , Humans , Female , Aged , Middle Aged , Male , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Creativity , Case-Control Studies , Prevalence , Atrophy , Magnetic Resonance Imaging
19.
Geroscience ; 45(4): 2405-2423, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36849677

ABSTRACT

Global initiatives call for further understanding of the impact of inequity on aging across underserved populations. Previous research in low- and middle-income countries (LMICs) presents limitations in assessing combined sources of inequity and outcomes (i.e., cognition and functionality). In this study, we assessed how social determinants of health (SDH), cardiometabolic factors (CMFs), and other medical/social factors predict cognition and functionality in an aging Colombian population. We ran a cross-sectional study that combined theory- (structural equation models) and data-driven (machine learning) approaches in a population-based study (N = 23,694; M = 69.8 years) to assess the best predictors of cognition and functionality. We found that a combination of SDH and CMF accurately predicted cognition and functionality, although SDH was the stronger predictor. Cognition was predicted with the highest accuracy by SDH, followed by demographics, CMF, and other factors. A combination of SDH, age, CMF, and additional physical/psychological factors were the best predictors of functional status. Results highlight the role of inequity in predicting brain health and advancing solutions to reduce the cognitive and functional decline in LMICs.


Subject(s)
Cardiovascular Diseases , Social Factors , Humans , Social Determinants of Health , Cross-Sectional Studies , Colombia/epidemiology , Vulnerable Populations , Aging , Cognition
20.
Cereb Cortex ; 33(12): 7428-7435, 2023 06 08.
Article in English | MEDLINE | ID: mdl-36813468

ABSTRACT

Frontotemporal dementia (FTD) has a complex genetic etiology, where the precise mechanisms underlying the selective vulnerability of brain regions remain unknown. We leveraged summary-based data from genome-wide association studies (GWAS) and performed LD score regression to estimate pairwise genetic correlations between FTD risk and cortical brain imaging. Then, we isolated specific genomic loci with a shared etiology between FTD and brain structure. We also performed functional annotation, summary-data-based Mendelian randomization for eQTL using human peripheral blood and brain tissue data, and evaluated the gene expression in mice targeted brain regions to better understand the dynamics of the FTD candidate genes. Pairwise genetic correlation estimates between FTD and brain morphology measures were high but not statistically significant. We identified 5 brain regions with a strong genetic correlation (rg > 0.45) with FTD risk. Functional annotation identified 8 protein-coding genes. Building upon these findings, we show in a mouse model of FTD that cortical N-ethylmaleimide sensitive factor (NSF) expression decreases with age. Our results highlight the molecular and genetic overlap between brain morphology and higher risk for FTD, specifically for the right inferior parietal surface area and right medial orbitofrontal cortical thickness. In addition, our findings implicate NSF gene expression in the etiology of FTD.


Subject(s)
Frontotemporal Dementia , Humans , Animals , Mice , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Genome-Wide Association Study , Brain/diagnostic imaging , Frontal Lobe , Parietal Lobe , Magnetic Resonance Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...